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pany delivery with improved image guidance using offline 
and online projection x-ray imaging and computed tomog-
raphy (CT). The second is to increase the total radiation 
dose using the historical dose per fraction (2 Gy) with the 
same image guidance. Literature on lung tumor irradiation 
has frequently cited the benefits to local tumor control of 
escalating the dose per fraction.2

The spatial relationship of lung tumors with important 
normal tissue structures, such as the spinal cord, esopha-
gus, heart, brachial plexus, normal lung tissue, bronchial 
tree, and trachea, make total dose escalation infeasible 
in many cases. Moreover, the motion of tumors during 
respiration complicates radiation treatment planning for 
lung cancer. The respiratory cycle also involves movement 
of normal tissue structures. This movement heavily in-
fluences tumor motion, which in turn affects the tumor’s 
shape, resulting in the deformation of both the tumor and 
surrounding organs. For these reasons, treatment plan-
ning for intrathoracic radiation (radiation within the chest 
cavity) requires tools that can provide the highest delivery 
precision and accuracy. 

L ung cancer is the most common cause of cancer-
related deaths in the US, with only 10 to 15 percent 
of lung cancer patients surviving five years after 
diagnosis.1 More than half of all solid tumors receive 

external beam ionizing radiation as part of treatment that 
combines radiotherapy with chemotherapy or with sur-
gery and chemotherapy. The ultimate goal of radiation 
treatment, or radiotherapy, is to treat the disease while 
avoiding damage to the normal tissue and critical organs 
that surround the tumor.

Much research is directed to lung cancer radiotherapy, 
yet there is room for significant improvement. Conven-
tional radiotherapy involves administering a prescribed 
tumor-killing dose, typically around 50 to 70 Gray (Gy: a 
unit of absorbed radiation dose) over anywhere from 25 to 
35 sessions, or treatment fractions. 

Technological advances and a deeper understanding of 
radiobiology—the study of how human tissue responds to 
high doses of x-ray radiation therapy—have enabled two 
alternatives. The first is to deliver the same total dose in 
significantly fewer fractions, say one to five, and accom-
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To meet that need, we propose a lung tumor modeling 
and computational framework that facilitates the tracking 
and prediction of respiratory movement and the deforma-
tion of organs surrounding the tumor. Preliminary results 
of our framework’s application show that, relative to ex-

isting methods, it is more accurate and computationally 
efficient in the radiotherapy treatment of lung cancer. It 
is also flexible enough to generalize to the radiotherapy 
treatment of other pathologies. 

RADIOTHERAPY’S CHALLENGES
Radiotherapy treatment typically begins with the patient 

entering the radiation treatment room and lying supine on 
the treatment table, as in Figure 1. For lung radiotherapy 
treatment, the patient is generally in a customized immo-
bilization device to limit natural motion during treatment. 
In-room lasers ensure that the patient is in the right 3D 
position with respect to the radiation treatment machine. 

Outside the treatment room, physicians and staff take 
mega- and kilovolt images of the patient to make sure that 
the subsequent radiation will adequately treat the tumor. 
Finally, the radiotherapist initiates the radiation treatment, 
carefully monitoring the patient during the process.

Studies have amassed considerable scientific evidence 
on both the benefits of dose escalation and the perils of 
normal tissue toxicity, and there have been tremendous 
gains in radiotherapy planning and delivery precision. 
These developments have made it critical for radiother-
apy treatment to accurately capture the geometry of the 
temporarily deforming organ, particularly in lung cancer 
radiotherapy, in which respiratory motion causes thoracic 
anatomy to change continuously in all four dimensions—
3D space and time. 

The ideal radiotherapy guidance requires complete spa-
tiotemporal knowledge of the movement and deformation 
of the volume—the region that includes the solid tumor and 

Figure 1. A patient being treated with external beam radio-
therapy using a Varian linear accelerator. Accuracy is essential 
in lung cancer treatment because respiratory movements can 
cause the tumor and its surrounding tissue to move and change 
shape.

Figure 2. Representative lung tumor motion traces recorded from four patients using the Synchrony system. The traces are indicative 
of the wide variety of respiratory patterns that are observed clinically. (Image from Y. Suh et al., “An Analysis of Thoracic and Abdomi-
nal Tumor Motion for Stereotactic Body Radiotherapy Patients,” Physics in Medicine and Biology, July 2008, pp. 3623-3640.)
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surrounding tissues and organs—to be treated. However, 
pretreatment imaging remains one of the weakest aspects 
of current radiotherapy guidance. Typically, radiothera-
pists use 4DCT to acquire raw CT images or projections 
over several respiratory cycles. An external motion moni-
tor aids in phase or amplitude sorting,3 placing projections 
into bins according to respiratory phase4 or displacement, 
respectively. Pretreatment imaging ends with the genera-
tion of a time series of 3D volumes, which describes the 
volume’s motion over a single representative cycle. 

Typically, radiotherapists use a maximum- or average-
intensity projection (MIP or AIP) from all phases to define a 
motion-inclusive internal target volume. The MIP represents 
the superposition; the AIP is the average. The internal target 
volume serves as the basis for a treatment plan and becomes 
the ground truth for subsequent radiotherapy stages.

Although researchers have proposed various strategies 
to improve 4DCT-based planning and delivery paradigms, 
several fundamentally challenging issues remain to be 
tackled:

One issue is cycle-to-cycle complexities. As Figure 2 
shows, respiratory motion is more complex than a single 
cycle can characterize. MIP and AIP images do not account 
for these complexities, which can lead to errors.5 Another 
challenge stems from forcing CT projection data from sev-
eral cycles into a few respiratory phase bins, which can 
lead to severe artifacts. Figure 3 shows some examples 
of these severities. Indeed, one study found that 45 of 50 
patients had at least one artifact, ranging in size from 4.4 
to 56.0 mm (mean magnitude of 11.6 mm).6

Finally, at 29 to 40 milliSieverts (mSv: Sievert is the unit 
of any of the quantities expressed as dose equivalent), the 
equivalent dose for 4DCT is about four times higher than 
that for 3DCT (3 to 10 mSv).7 Such a high imaging dose dis-
courages more frequent imaging and long-term monitoring.  

These challenges make it highly desirable to have a 
computational radiotherapy-guidance strategy that uses a 
4D motion model developed from 4D magnetic resonance 
imaging (MRI) and a planning 3DCT acquired at a refer-
ence phase. The idea is to update the model with real-time 
position information and then deliver the corresponding 
updated radiation fluence map (a 2D map of the x-ray in-
tensity distribution from the medical linear accelerator). 

COMPUTATIONAL FRAMEWORK
To accurately model the tumor and surrounding sensi-

tive structures, we developed a 4DCT geometric modeling 
framework8 that tackles several important tasks in ana-
lyzing and processing 3DCT volumes and sequential 
fluoroscopy images (projected 2D images). Our current 
framework uses temporally dense MR images (sliced 2D 
images) to refine our integrated 3DCT volumes. Registering 
MR images with 3D volumes is usually simpler and can be 
more robust. 

A 4D model parameterizes irradiation volume tem-
porally. From this deforming 4D parametric model, it is 
possible to extract a tight planning margin to spare normal 
tissues from dose radiation during delivery. 

As Figure 4 shows, our framework has two phases: off-
line modeling and planning, and online prediction and 
delivery. As their names imply, the first phase focuses on 
modeling tumor motion and planning radiotherapy, while 
the second phase helps guide treatment delivery.

Offline modeling and planning
The offline phase is concerned with modeling the tu-

mor’s motion and deformation. To better predict tumor 
movement, which could be affected by neighboring organs 
and tissues during respiration, the model covers the entire 
neighboring volume region.

Contour segmentation. The first step in this phase is 
to clearly segment the tumor and surrounding structures 
within the potential irradiated volume from 3DCT or MR 
images. Because reliable 3D image segmentation against 
noise is critical at this stage, we developed the template-
guided graph cut (TGGC) algorithm. 

To perform the 3D graph cut, the algorithm uses a novel 
metric that combines image intensity (noise filtered) and a 
predesigned implicit scalar field that captures the template 
shape and serves as a reference. TGGC reaches globally op-
timal segmentation; simple user interactions can iteratively 

Figure 3. Examples of motion-induced artifacts observed in 
lung 4DCT. Clockwise from top left: blurring, duplicate, incom-
plete, and overlapping artifacts. (Image from T. Yamamoto et 
al., “Retrospective Analysis of Artifacts in Four-dimensional CT 
Images of 50 Abdominal and Thoracic Radiotherapy Patients,” 
Int’l J. Radiation Oncology, Biology, and Physiology, vol. 72, no. 4, 
2008, pp. 1250-1258.)
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and adaptively refine the extracted contour. A postprocess 
uses morphological operations (performing open then close 
operations with radius-3 disks) to smooth the extracted 
contour.

Figures 5 and 6 show our preliminary results. Figures 6a 
through 6d show that TGGC is superior to existing segmen-
tation methods in extracting the object of interest from the 
image background. Figures 6a through 6c show the results 
of using the level set,9 watershed,10 and original graph cut11 
methods, respectively. Compared with the level set method, 
a popular method of segmenting medical image data, TGGC 
takes about a third of the computation time to segment the 
entire 3DCT volume. The segmentation also more tightly 
bounds the tumor’s contour. Although faster than TGGC, the 
watershed method leads to significant oversegmentation, 
an outcome that TGGC avoids.

From volume image to a tetrahedral mesh. After 
extracting contours of both the tumor and surrounding 
structures, our framework models both the geometry 
and material of the entire volume instead of modeling 
only boundary shells. It then adaptively tetrahedralizes 
(converts a volume image into a tetrahedral mesh) the 
irradiated volume. 

Figure 7 illustrates an example of a tetrahedral repre-
sentation of a tumor and surrounding tissue. Such a finite 
element representation is much sparser than the grid-based 
image representation, and any local region can be coars-
ened or refined adaptively when necessary. This effectively 
represents the region’s inherent structure, while conform-
ing to important features and materials. It is then possible 
to use a linear interpolation or a spline function to represent 
the deforming irradiated volume. 

One critical issue is how to compute the optimal sam-
pling points for tetrahedralization. Given the number of 
sample points, the goal is to minimize the mean square 
error (mean of the square difference) between the linear in-
terpolation and the corresponding original intensity values. 
Intuitively, selected points should balance the uniformity 
and the sampling of sharp features. It is then possible to 
use Delaunay tetrahedralization to tessellate the model on 
these sampled points.

Volumetric mapping and interpolation. After repre-
senting volumetric regions of interest using tetrahedral 
meshes, our algorithm computes bijective volumetric 
mapping to consistently parameterize 3D volumes and 
then interpolate the 4D temporal model.

Bijective volumetric mapping involves computing a  
lowly distorted mapping (small angle and area distortion, 
which is physically natural) between two consecutive vol-
umes through a coarse-to-fine framework. Initially, the 
algorithm extracts corresponding features and matches 
them in 3D. Then taking these features as soft constraints, it 
computes surface and volumetric mappings12 between cor-
responding contours and volumes. The result is a consistent 

Figure 4. Two phases in the computational framework. The first 
phase, offline modeling and planning, emphasizes radiotherapy 
planning and is based on CT and magnetic resonance (MR) 
scans. The second phase focuses on online prediction and treat-
ment delivery. Real-time scanned 2D images aid in synchroniz-
ing and refining the 4D model, which the system uses to predict 
the tumor’s trajectory and geometry and guide treatment 
delivery.

Figure 5. Tumor segmentation from CT images. (a) Segmenta-
tion performed in 3D; the red solid is the tumor; (b) segmenta-
tion visualized in a cross-section.
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and interpolation step using a sequence of 3D MR images 
and cross-model volumetric parameterization to register 
the volume from the MRI and the interpolated volume. It 
can then correct the consistently deforming 4D model ac-
cording to the matching results. The refined continuous 
parametric 4D model is ready for use in determining the 
trajectory and geometry of the volume of interest.

Refining the 4D model and predicting motion
In the online phase, our framework uses real-time 

scanned 2D images (orthogonally mounted x-ray) to syn-
chronize and refine the 4D model. From the refined 4D 
model, the framework can then predict the tumor’s tra-
jectory and geometry. This prediction makes it easier to 
optimize the treatment beam to target the most desirable 
radiation positions. 

Model synchronization and refinement. During radi-
ation delivery, it is possible to obtain a 2D time series 

parameterization of all temporally sequential volumes onto 
one common domain D(u,v,w).

With this one-to-one correspondence in hand, the 
algorithm can create a continuously deforming 4D 
model—M(u,v,w,t)—by computing the physically natural 
shape interpolation between two consequent models. 
Given the (u,v,w) parameter coordinate in the domain, it 
can trace a point’s trajectory under different time t; simi-
larly, given any t, it can obtain the 3D volume’s location 
and geometry at that moment.

4D model refinement. The first three steps in this 
phase rely on CT images, which can have very high reso-
lution and thus very good spatial accuracy. However, CT 
imaging requires a high dose, and a frequent and long 
CT imaging sequence is impossible. For this reason, CT-
sampled volumes tend to be temporally sparse. 

To compensate for this disadvantage, our algorithm 
refines the 4D model computed in the previous mapping 

Figure 6. Comparison of segmentation results. Tumor contour segmentation based on (a) level set method, (b) watershed method,  
(c) original graph cut method, and our TGGC algorithm (d) without de-noise and (e) with de-noise. The final segmentation (e) is suit-
able for subsequent tumor modeling and tracking tasks.

Figure 7. Tumor and surrounding lobe: (a) contour surfaces and (b) adaptive conversion to a tetrahedral mesh.

(a) (b) (c) (d) (e)

(a) (b)



PERSPECTIVES

compUteR 64

of x-ray projection images and register them with the 
moving 3D model. Our framework then uses the results 
of the matching to correct the 4D model. The optimal 
mapping is searchable within a conservative time range, 
starting from the last synchronized point.

Beam radiation optimization. With the deforming 3D 
volume, it is possible to optimize the beam’s radiation 
direction. As Figure 8 shows, ideally, the beam should be 
planed so that it can see the tumor clearly without being 
visually blocked by other organs. Otherwise, the radiation 
will hit those organs before it reaches the tumor. To solve 
this problem, we propose using an efficient hierarchical 
integer linear program (HILP). Our recent work in autono-
mous robotic environment inspection has demonstrated 
that an HILP scheme can be very efficient in solving this 
challenging 3D region-inspection problem.13

Our computation framework and platform for lung 
tumor modeling and tracking can greatly enhance 
radiotherapy planning and delivery, in large 

part because it effectively integrates reliable 3D image 
segmentation; volumetric modeling, analysis, and param-
eterization; physical and geometric interpolation; and 
tracking techniques. Generalizing our computation para-
digm would allow other medical planning and treatment 
regimens to benefit from this integration.

Our framework already cuts segmentation preprocess-
ing time by roughly two-thirds, and we expect advances 
in parallelism to decrease that time even further. Segmen-
tation preprocessing takes O(nlogn) time and O(n) space, 
where n is the pixel number of each volume image. We 
can solve volumetric mapping computation within O(m3) 
time and O(m2) space, where m is the vertex number of 
interested objects. 

All these geometric computation algorithms are local 
and can be effectively parallelized. Using GPUs can im-
prove the entire pipeline’s efficiency. We plan to explore 
a GPU implementation and expect to achieve significant 
efficiency improvement in both offline data analysis and 
planning, and greater optimization of real-time treat-
ment. 

Figure 8. Tracking temporally deforming tumor and surrounding lobe. The red area represents the tumor under two time sequences. 
Green and blue lines indicate the correspondence between the solid regions in the two time frames (the 3D tumor and lobe at the 
bottom row are rotated 90 degrees in the y-axis to better visualize the matching).
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